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FEASIBILITY STUDY FOR  REMOTE SENSING 
O F  ATMOSPHERIC  TURBULENCE PROFILES 

by  Arthur  Peskoff,  Robert S. Margulies  and L. Kent Wanlass 

TRW Systems  Group 
Redondo Beach,  California 

SUMMARY 

The  purpose of this  investigation is to  perform  analytical  and  experi- 

mental  studies  which  will  determine  the  feasibility of a practical  implementa- 

tion of a new technique  for  the  remote  sensing of clear-air  turbulence  profiles. 

The  technique is  based on a published  mathematical  result  which  demonstrated 

that  the  turbulence  profile  along  the  line of sight  to a plane-wave  light  source 

can  be  calculated  uniquely  from  an  integro-differential  transform of the 

correlation  function of the  logarithmic-  amplitude  fluctuations of light  which 

has  propagated  through  the  turbulence. 

A computer  program.has  been  developed,  which  performs  the  mathemat- 

ical  inversion  transform.  Numerical  calculations  to  simulate a practical 

application of the  technique  are  accomplished by  applying  the  inversion 

formula  to  the  correlation  function of a delta-function  turbulence  profile. 

By cutting off the  inversion  integral  at a finite  value we simulate  the 

inability  to  measure  correlation  functions  for  spatial  separations  greater  than 

some  finite  value. We find  that  the  spatial  resolution of the  inversion  proce- 

dure is inversely  proportional  to  the  square of the  maximum  separation,  and 
directly  proportional  to  the  square of the  distance  to  the  turbulence  layer. 

By varying  the  number of terms in  the  summation  approximation  which  the 

computer  program  makes  for  the  inversion  integral, we simulate  the  effect 

of varying  the  number of points  at  which  the  correlation  function is sampled 
in  an  actual  measurement. 

The  correlation  function is calculated  for a family of continuous  tur- 

bulence  profiles,  and  inverted  using  the  above  inversion  program. 



An analytic  expression is derived  relating  the  mean-square  error  in 

the  calculated  turbulence  profile  to  the  mean-square  error  in a measured 

correlation  function.  The  expression  is  used  to  calculated  the  logarithmic- 

intensity  sample  size  required  to  keep  the  error  in  the  computed  profile  below 

some  tolerable  value. 

An experiment  has  been  set  up  to  verify  the  theoretical  predictions. 

The  apparatus  consists of an  artificial  turbulence  source, a pulsed  laser  beam 

which  propagates  through  the  turbulence,  and a system  for  photographically 

recording  and  scanning  the  random  diffraction  pattern  induced  in  the  beam. 
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I. INTRODUCTION 

The  present  study  is  an  evaluation of a passive  optical  technique  for 

detecting,  ranging  and  dete'rmining  the  strength of clear-air   turbulence  at   an 

arbitrary  separation  from  an  observer.   The  basis of the  technique  is a 

mathematical  inversion' of the  formula  for  the  correlation  function of the 

fluctuations of the  logarithmic  amplitude of light  which  has  passed  through 

turbulence.  The  light  may be from a s t a r  o r  other  plane-wave  source. 

Utilizing  the  inversion,  the  profile of turbulence  along  the  line of sight  to  the 

light  source  can  be  determined  uniquely  by  taking  an  integro-differential 

t ransform of the  correlation  function. If the  correlation  function  could  be 

obtained  exactly,  the  turbulence  profile  could  be  calculated  exactly, In 
practice,   however,   an  actual  measurement of the  correlation  function  contains 

noise.  The  purpose of our  investigation  is  to  determine  the  degradation of the 

calculated  turbulence  profile  caused by practical  limitations on the  measure- 

ment of the  correlation  function.  In  addition, we are  setting  up  an  experiment 

to  verify  the  inversion  technique  under  controlled  laboratory  conditions. 

2 

In  an  application of the  method to  the  remote  sensing of atmospheric 

turbulence,  the  simplest  method of obtaining  the  correlation  function  is by 

using  an  array of small-aperture  telescopes,  which are  each  aimed  at   the 

same  star.   The  t ime  history of the  intensity  measured by  a photomultiplier 

at  the  output of each  telescope  is  passed  through a logarithmic  amplifier  and 

recorded on magnetic  tape.  The  logarithmic-intensity  recordings  from a 

pair of telescopes  are  then  correlated  electronically by  multiplying  the  two 

signals  and  averaging  over  their  time  duration.  This  yields  the  value of the 

correlation  function  corresponding to  the  separation of the two telescopes, 

The  multiplication  and  averaging is then  repeated  for  all  possible  pairs of 

telescopes to  obtain  the  correlation  function  at  all  possible  separations 

available  in  the  given  array of telescopes.  The  measured  correlation  function, 

thus  obtained,  can  then  be  inverted  by  a  digital  computer  programmed  to 

perform  the  appropriate  integro-differential  transform.  The  result  is  the 

profile of turbulence  along  the  line of sight  to  the  star. 
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The  correlation  function is maximum  for  zero  separation (i. e. , correla-  

tion of the  signal  from  one  telescope  with  itself)  and  then  decreases  in 

magnitude  as  the  separation  between  telescopes  increases.  Beyond a certain 

spatial  separation,  noise  in  the  measurement  overshadows  the  correlation 

function,  and  no  useful  data  can  be  obtained.  Thus,  inpractice,  the  correla- 

tion  function  can  be  obtained  only  for  separations from zero  to  some  maximum, 

finite  value.  In  this  report  (Sec. 111) we present  the  results of our  study  of  the 

effect of this  finite  cutoff,  and  find  that it limits  the  spatial  resolution  in  the 

calculated  profile. As the  maximum  separation  between  telescopes  increases, 

the  size of the  smallest   irregularit ies  in  the  turbulence  profile  that   can  be 

seen  decreases.  The  spatial  resolution  is  found to be inversely  proportional 

to  the  square of the  maximum  separation. 

By the  measurement  technique  described  above,  the  correlation  function 

i s  only  sampled  at a  finite  number of spatial  separations,  rather  than  contin- 

uously. We have  therefore  investigated  the  dependence of the  calculated 

profile on  the  number of sample  points. 

There  will  be  random  noise  present  in  any  measured  correlation 

function.  It arises  from  such  causes  as  unwanted  stars and stray  light  in 

the  field of view,  instrument  noise,  and  the  error  introduced  because  in 

practice  the  time  averages t o  obtain  the  correlation  function  are  performed 

over a  finite  sample of the  intensity  (rather  than  an  infinite  sample). We 

have  derived  the  general  relation  between  the  mean-square  noise  in  the  cor- 

relation  function  and  the  resultant  mean-square  noise in the  calculated  profile. 

This  allows  us to  determine  the  precision  requirements on  the  correlation 

function  measurement fo r  a  given  desired  precision  in  the  calculated  profile. 

We have  applied  the  noise  relation  thus  far t o  determine  the  size of the 

intensity  sample  required.  In  the  device  outlined  above, for example,we  have 

found  the  time  interval  necessary for recording  the  intensity. 

We are  performing a laboratory  experiment  in  which  artificial  turbulence 

is  generated in  a  wind tunnel  by  placing  a  heated-wire  grid  in  the flow. A 

pulsed-laser  beam  propagates  through the turbulence  (normal  to  the flow). 

The  logarithmic  intensity  in a cross  section  of  the  beam  is  recorded on a 
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photographic  plate, after propagating  approximately  ten meters beyond  the 

turbulence,  The  correlation  function  will be obtained  by  performing a spatial 

average  over  the area of the  photograph  (instead of the time average  in  the 

example  above)  and  subsequently  averaging  over a number of photographs. 

We  now present  a brief outline of the  mathematical  background  which is 

the basis   for  the remote  turbulence  sensingtechnique.  The  reader is r e fe r r ed  

to  References 1 and 2 for more  datails .  

The  correlation  function of the  fluctuations of the  logarithmic  amplitude 

of the  wave is defined  by 

where 

is  the  logarithmic  amplitude of the  wave of intensity I(?, t) ,   at   posit ion  Fin a 
plane  perpendicular to the  propagation  direction.  The  angular  brackets  denote 

an  average,  which  may  be  either  an  ensemble  average,  an  average  over 7, o r  

an  average  over  the  time, t. F o r  a plane  wave  and  isotropic  turbulence,  the 

correlation  function (1. 1) depends  only on the  magnitude p =  171. 
The  theory  relating  the  correlation  function f o r  a plane  wave  to  the t u r -  

bulence  through  which  the  wave  has  propagated  has  been  given by Tatarski . 
He describes  the  statistical  fluctuations of the  index of refraction, n(F, t), by 

defining  the  structure  function 

2 

The  structure  function  (1.  3) is assumed  to  be a relatively  slowly  varying  func- 

tion of i? (compared  to its functional  dependence on;) and  hence is expressible 

a s  the  product of a function of and a function of F .  For  the  special   case of 

Kolmogorov  turbulence  (which  usually  exists  in  the  atmosphere” ‘), the  struc- 

ture  function  has  the  form 

5 



where C (3 is the  "structure  constant, I '  and  and L are,  respectively, the 

smallest and  largest  turbulent  eddy  sizes.  The  turbulence is isotropic  in'this 

case, and  hence Dn is a function of p = IFl. The  spectral  density of the 
refractive-index  fluctuations is related to the  structure  function,  in the iso- 

tropic  case, by the  transform 

2 
n 0 0 

2 

and ip ( K  ,F) may  be  written as a product n 

If the  functional  dependence of Q n ( 0 ) ( ~  ) on the  turbulence  wavenumber is known, 

the  nature of the  turbulence at any  spatial  location ? is completely  determined 

by  the structure  constant C (r), which  will  henceforth  be  referred  to  simply 

as the  turbulence  profile. 

2-c 
n 

In the  special  case  when  the  structure  function of the  index  fluctuations 

is given by Eq. (1.4),  the K -dependence of the  spectral  density  may  be  found, 

by using Eq. (1. 5), to  be 2 

Using  the  Rytov  perturbation  solution of the  wave  equation,  and  the 

statistical  functions  defined  in Eqs. (1.  3), (1. 5) and  (1.6),  Tatarski  has  shown 

that  the  correlation  function  for  the  fluctuations  in  the  logarithmic  amplitude 

of the  electromagnetic  wave  (1. 1) may be expressed  as  the  following  double 

integral  over z ,  the  distance  measured  along  the  propagation  path  from  the 

observation  point,  and  over K,  the turbulent  wave  number, 2 

where k is the  wave  number of the  electromagnetic  wave,  and z is the  coor- 

dinate  measured  from  the  observation  point  backwards  along  the  propagation 

path. 

6 



. -. . . . . , . . . . - " . . . . . 1 
If we  define the integrated  turbulence  profile by 

then it may  be  shown by inverting Eq. (1.8), with an(') given  by Eq. (1.4), 

that 

(1. 10) 

In Eq. (l,lO),F(alblw) = lFl(alblw) = M(a(b1w) is the  confluent  hypergeomet- 
ric  (Kummer)  function . 3 

The  convergence of Eq. (1. 10) may  be  improved by subtracting a func- 

tion h ( p )  from  BX(p),  which has the  identical  asymptotic  behavior  as  BX(p) in  

the limit p -c a, that is, 

Furthermore,  the  moment of the  turbulence, 1 z2C:(z)dz, which  appears  in 

Eq. (1.1l)can  be  related to the  correlation funcpion by 

(1.  12) 
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The more rapidly  converging  form of Eq. (1. 10) is then 

1 

(1.  13) 

The first integral  in Eq. (1.  13)  and  the  integral  in Eq. (1.  12) converge 

more  rapidly  than  the  inte.gra1  in Eq. (1.  10). The  second  integral  in Eq. (1. 13) 

can  be  calculated to any  desired  precision  because  the  p-dependence of h(p) 

is known exactly.  Hence Eq. (1. 13) appears to be  more  suitable  for  invert- 

ing  experimental  correlation  functions  (which  can  be  measured  only  over a 

finite  range 0 < p < p ) than Eq. (1.  10). We can  obtain  greater  precision 

for  S ( z )  f r o m  B X ( p )  data  which is taken  over a given  range of p using Eq. 

(1. 13) rather  than Eq. (1. 10). 

m 

The  purpose of the  current  investigation is to  evaluate  the  practicality of 

using Eq. (1.10) o r  (1.13)  to  accomplish  remote  sensing of turbulence  profiles. 

In Section 111, Eqs. (1.10)  and  (1.13) a r e  applied  to  the  inversion of the  corre- 

lation  function of a delta-function  turbulence  profile, 

Cn(z) = A ~ ( z   - z 0 ) .  2 
(1.14) 

The  integrals  are  carried  out  numerically,  on a CDC 6500 computer,   from 

p = 0 to a finite  value p m .  This  inversion  leads to a turbulence  profile  which 

has  finite  width.  The  dependence of the  width  on pm is  studied  and it is found 

to  vary  inversely  with pm . The  integrals  are, of course,  approximated by 

sums. The  dependence  on  the  number of te rms   in  the sum is studied. 

2 

In  Section IV, an  analytic  expression is found for  the  correlation  func- 

tion  corresponding  to a particular  smooth  turbulence  profile, 

a 



(1.15) 

The  correlation  function is obtained.numerically  on  the CDC 6500  using  the 

power  series  for  the  analytic  expression,  and  the  inversions of Eqs. (1.10) and 

(1.13) applied  to it. As expected,  the  integrated  profile  S(z) is found  to con- 

verge  for  much smaller values of pm than  in  the  case of the  delta-function 

profile of Section 111. 

In  Section IV an  expression is derived  for  the  mean-square  noise  in  the 

calculated  value of S ( z ) ,  in te rms  of the  noise  in  the  measured  correlation  func- 

tion.  The  noise  in B (p )  resulting  from  performing  the  averages  in Eq. (1.1) 

over  a finite  statistical  sample is calculated.  This  result  is  applied to de te r -  

mine  the  noise  in S(z )  from  using a finite  sample. 

X 

Section V I  contains a description of the  experimental  apparatus  and  data 

reduction  technique  used to measure  correlation  functions  in  the  laboratory. 

Some  partially  reduced  data  are  shown. 
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11. SYMBOLS 

A = total  area under  turbulence  profile 

BX(p) = correlation  function of logarithmic  amplitude  fluctuations 

' ~ x ( p )  = sample of ~ ~ ( p )  

Cn (z)  = structure  constant  or  turbulence  profile 

D = width of turbulence  profile 

2 

Dn = structure  function of refractive  index 

F (a  lbl W )  = confluent  hypergeometric  (Kummer)  function 

l F l ( a  lbl w )  = F(a b l  w) 

1 2  

g = Pn Cn ( z )  

h(p) = asymptotic limit of BX(p) 

I = intensity 

Jo = zeroth-order  Bessel  function 

k = wavenumber of electromagnetic  wave 

F (a Ib, c I w )  = hypergeometric  function 
2 

L = intensity  sample  length 

Lo = outer  scale of turbulence 

= inner  scale of turbulence 
IO 

M(a lbl w) = F (a Ibl w) 

m = total  number of sample  points 

n = refractive  index 

1 1  

N p )  = noise  in  measurement of corre:ation  function 

Q(a, p ;  b, p ' )  = PP ' Im{e  F(a  111 i p  k/4z)) b { e  
ir/ 12 2 in /  12 F(b 111 i p '  2 k /4z)  

" r - position  vector 

11 



s ( ~ )  = L C n  2 (z ')dz'  = integrated  turbulence  profile 

t = t ime 

sample  duration 

velocity of turbulent  flow 

= dimensions of photograph 

p 2k/ 42 0 

position  measured  backwards  along  line of sight 

distance  from  observer to  maximum of profile 

2 
K zo/k 

gamma  function 

= e r ro r   i n  S ( Z )  

6 ( z -   z o )  = Dirac delta  function 

'j  P 

5 = p z / z o  

= Kronecker  delta 

K = turbulence  wavenumber 

w = rms  noise  amplitude 
-c 
p = vector  connecting  two  observation  points 

= (42 / k )  1 / 2  
P O  0 

p1 

Pm 

= first zero-crossing of B X ( p )  

= maximum  value of p for  which B X ( p )  is   sampled 

u BX (p ,  L) = variance of B X ( p )  for  sample  length L 2 a 

u s  = [ < ( b s )  >]  ' / '  = standard  devi  ation  in s ( z )  

Qn(0)  ( K )  = spectral  density  function of refractivity 

X = - en I = logarithmic  intensity 1 
2 

12 



III. INVERSION OF THE CORRELATION  FUNCTION OF A 
DELTA-FUNCTION  TURBULENCE  PROFILE 

\ .  
n - 
I ?€) ! E  

f.' 
,< .t A. Calculation of the  Correlation  Function 

If BX(p)   were  known precisely,   for all values of p in  the  range 

0 < p <a, the  turbulence  profile  Cn2(z)  could  be  obtained to any  desired  pre- 

cision by  a numerical   calculation  from Eq.  (1. 10) o r  ( 1 .  13).  However,  in  any 

actual  measurement of BX (p ) ,  noise   wil l   be   present ,   resul t ing  in   some  error  

in  the  turbulence  profile  which is  calculated  from  the  noisy  correlation  func- 

tion. In this  section we study how Eqs. (1 .  10) and ( 1 .  13) are  affected by a 

deficiency  in  our  measurement of BX(p),  which  will  be  present  in  any  practical 

application. We consider  here,  the  effect of obtaining  BX(p)  only  in  the  finite 
range 0 < p < p m' 

Unfortunately,  because of the  complicated  form of Eqs. ( 1 .  10) and 

( 1 .  13 )  it  is not  possible to make  fur ther   progress  without resorting  to  numerical  

calculations. We can,  however,  learn a great  deal  about  the  detailed  proper- 

t ies of Eqs. (1. 10)  and ( 1 .  13) by applying  them t o  the  numerical   inversion of 

the  correlation  function of a delta-function  turbulence  profile. As a prelimi- 

nary  step,  it is f i r s t   necessary   for  us  to  obtain  this  correlation  function,  which 

has  never  been  done  previously. 

I. i, 

The  correlation  function of Eq. ( 1 . 8 ) ,  with  the  Kolmogorov  spectral 

density (1.7), and  the  delta-function  profile (1. 14), can  be  expressed  in 

t e r m s  of a confluent  hypergeometric  function, 5 

This  function  has  been  computed on the CDC 6 5 0 0 .  

13 



In the  range 0 C p2k/4z0 I 10, the  power  series  was  used  for  the  con- 

fluent  hypergeometric  function, 6 

where (a), = r ( a t n ) / r ( a )  and y = p2k/4z0.  The  summation  was  carried  out  to 

a value of n for  which  the last t e r m  in (3 .  2)  was  less  than  in  magnitude. 

In the  range 10 p k/4zo < 100,  the  asymptotic  expansion of the  hypergeo- 

metric  function  was  used.  The  leading  term  in  the  asympotic  expansion of the 

f irst  te rm  in   square   b racke ts   in  Eq. (3 .  1)  exactly  cancels  the  second  term  in 

square  brackets.  The  asymptotic  expansion of the  bracketed  expression  in 

Eq. ( 3 .  1) is7 

2 

The first five  terms  in  each  summation of ( 3 . 3 )  were  used  in  the  calculation. 

The  resulting  correlation  function is shown in  Fig. 1 a s  a function of the  vari- 

able y = p2k/4z0. In the  range  pzk/4zO > 10, the  curve  is  magnified by a 

factor of 100 for  clarity. 

B. Numerical  Inversion  Using  Eq.  (1.6) 

The kernel  function  in  Eqs.  (1.  10)  and (1. 13),   Im  {exp(i~r/l2) 

F( 11/6 I 1 I i p  k/4zb } , is calculated  in  the same way, from  the  power  series 2 
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Figure 1. The logarithmic-amplitude  correlation  function, B (P), for  delta-function  turbulence, 
2 2 x 

c ( 2 )  = A ~ ( z - z ~ ) ,  versus p k / 4 z  {vertical scale arbitrary, 1OOX magnification for 
n2 

0 

p k/4zo > 10). 

I 



asymptotic  expansion and  the 

Im 

(3.5) 

The  kernel  function is  shown  in  Figure 2 as a function of p k/4z  in  the  interval 

0 5 p2k/4z < 100. The  function is  reduced by a factor  of  10 fo r  p k/4z > 10. 

2 

2 

We have  carried  out  the  inversion of Eq. (1.10)  numerically,  utilizing  the 

calculated  correlation  function  (with A = 1 c m  ’I3) and  kernel  function.  This 

has  been  done  for  z/zo = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.92, 0.94, 0.96, 0.97, 

0.98,  0.99,  1.00,  1.01,  1.02,  1.03,  1.04, 1.06, 1.08, 1.10, 1.20, 2.00, 5.00 and 

10.00. For   each  of these  values of z /zo,   the   integral  (1.10) is carr ied  out  

f r o m  p k/4zo = 0 to p k/4zo = 100. The  integral  is  calculated by Simpson’s 

rule  with 2,001 uniformly  spaced  points  in  the  interval 0 5 p2k/4z 5 100. 

2  2 

0 

The  argument of the  kernel function in  Eq. (1.10)  runs  from p k/4z = 0 to 2 

p2k/4z = 100 zo/z,  and  hence as z/z  decreases,  the  kernel  function  becomes 

increasingly  more  oscillatory as a function of the  integration  variable 

y = p k/4z . When z / z  = 0.1  (the smallest value  used  in  the  numerical 

inversion),  the  kernel  function is  required  in  the  range 0 5 p2k/4z 5 1000. The 

upper  curves  in  Figures 3a-3h  show  sample  results of the  computer  calcula- 

tions of the S ( z )  integral  in Eq. (1.10)  (with  the  upper  limit  replaced by p m )  

as  a function of p 2k/4z  in  the  range 0 C pm2k/4zo < 100. The  horizontal 

scale printed  on  the  figures is p 2k/4z0.  The  right-hand  vertical  scale 

corresponds  to  the  upper  curves. 

0 

2 
0 0 

m 0 ’  

m 
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Figure 2. The  kernel of the integral  transform, Im {exp(in/l2) F(11/61 llip k/4z) )  versus p k/42 2 2 

2 0 

(1/10 vertical  magnification  for p k/4z > 10. 



Figure 3 .  C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e  S(z) f o r   d e l t a - f u n c t i o n   p r o f i l e ,   v e r s u s  P 2 k / 4 z .  

Upper curve is from E q .  (1.6) , lower  curve  from E q .  (3.10). ( a )  z / z o  = 0.10 
m 
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Figure 3b.  z / z o  = 0.40 
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Figure 3c. z / z o  = .90 



Figure  3d.  z / z o  = .99 



Figure 3e. z / z o  = 1.00 



Figure 3 f .  z / z o  = 1.01 



Figure 3g. z / z o  = 1.10 
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F i g u r e  3h. z / z  = 2.00 
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C. Numerical  Inversion  Using Eq. (1.13) 

The  asymptotic  behavior of the  function  h(p)  in  the limit p - m i s  p re -  

scribed by  Eq.  (1.7). Its behavior  for small p is arbi t rary.  If we  take  h(p) = 0 

for  p < p  Eq.  (1.13)  becomes m' 

+la h ( p 3  p Im {eiii/" F (2 1 1 I i p  4z k )} dp 
2 

Pm 

The  second  integral  in  Eq. (3.6) i s  small compared to the  third  because  in  the 

former,  h(p)  just  cancels  the  leading  term  in  the  asymptotic  series of B X ( p ) ,  

and  hence,  being of higher  order  in  the  small  quantity 42 / p m  k, it is negli- 

gible.   For p > p,, h( p) is taken  equal  to  the  leading term  in  the  asymptotic 

se r ies  of B, (p), 

2 
0 

In  the  remaining  integral  from p to m in Eq. (3.6),  the  confluent  hypergeo- 

metric  function  may  be  approximated by  the f irst  term  in   i ts   asymptot ic   ser ies .  
m 

The  integral   from p to m is therefore  approximated by m 
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Substituting Eqs. (3 .7 ) ,  (3.8)  and ( 3 . 9 )  in Eq. (3.6), we obtain 

(3.10) 

The  significance of Eq. (3.10) is that i f  data is available  for BX (p) only 

over a finite  range of p (0  C p C p ), the  second term in  Eq.  (3.10)  provides a 

first-order  approximation  to  the  missing  part ( p m <  p < a) of the  integral i n  

Eq. (1.10).  The  correction  term  in Eq. (3.10) is related  to B (p) approxi- 

mately by the  expression 

m 

4 x 

where we have  replaced  the  upper  limit in  the p integral  in Eq. (1.8) by p m .  

The  lower  curves  in  Figures  3a-3h  show  selected  results of the  com- 

I-* 

puter  calculations of S ( z )  using Eq. (3.10)  with J z 2 C f  (2) dz = z 2  to  invert  the 
0 

0 

correlation  function  (3.1) of a delta-function  turbulence  profile.  It  can  be  seen 

f r o m  a comparison of the  lower  curves  with  the  upper  curves  that  the  effect of 

the  correction  term  in Eq. (3.10) is to eliminate  the  dominant  oscillatory  com- 

ponent  [proportional  to  (yzo/z) sin  (yzo/z)  according to  (3.10)] in  the  upper 

curves,   for  large p. 

- 1/3  

We can  see a t rend  f rom  Figure 3 as z/z varies  from  0.1  to 2. In  Fig- 
0 

ure  3a, z / z o  = 0.1, there  is a high-frequency  oscillation,  which  originates 

f rom the  kernel  function  shown  in  Figure 2, and a lower-frequency  modulation, 
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which  originates  from  the  correlation  function  shown  in  Figure 1. In  Fig- 

ure  3b, z / z  = 0.4, the  high-frequency  oscillation  has  decreased  by a factor  

of 4 in  frequency  and  the  lower-frequency  modulation is virtually  unchanged. 

These  curves  appear to  be  converging  to  unity  (within  the  ,precision of the 

calculation). In Figure 3c, z /zo = 0.9, the  higher-frequency  due  to  the  kernel 

has  decreased  to l 0 / 9  of the  lower-frequency of the  correlation  function,  and 

the  low-frequency  beats  are  evident.  This is analogous to the  Gibbs  phenome- 

non of Fourier  analysis.  In  Figure 3d, z /zo  = 0.99, the  beat-frequency  has 

become  very  small  and we see  that   the  entire  curve  from p = 0 to 

p 2  = 400 z /k represents a small  fraction of a cycle,  and  the  integration  range 

is too  small  for  the  integral to reach  unity.  In  Figure 3e, z /zo = 1.0, the  beat 

frequency  is  zero  and  the  curve  appears  to  be  heading  for  1/2.  In  Figure 3f, 

z / zo  = 1.01, the  trend  reverses.  The  beat  frequency  is  very  small  but  the 

curve  is  now starting  downward  toward  zero.  In  Figure 3g, z /zo = 1.1, the 

appearance  is  similar to Figure 3c, z /zo = 0.9, except  the  beat-frequency 

oscillation  is  centered  on  zero  rather  than  one.  In  Figure 3h, z / z o  = 2.0, the 

beat  frequency  has  increased  and  the  amplitude of oscillation  around  zero 

decreased. 

0 

2 

0 

D. Dependence of Spatial  Resolution  on p m 

We can now use  these  results  to  answer  the  important  practical  question 

of how the  spatial  resolution  obtainable  in  the  turbulence  profile  depends  on  the 

value of pm in  Eq.  (3.10).  Figure 4 is a plot of S(z)   versus   z /z   for   four   differ-  

ent  values of p, ( p m  k/4zo = 12.5,  25, 50, and  100).  The  points  in  Figure 4 

a r e  obtained from  the  results shown  in Figures  3a-3h,  as  well  as  the  results 

of calculations  for  other  values of z/zo  not  illustrated  in  this  report.  The 

curves  in  Figure 5 a r e  the  negative  derivatives of the  curves  in  Figure 4. 

They  show  the  calculated  turbulence  profiles,  Cn ( z ) ,  for  the  four  values of pm. 

2 0 

2 

The  width of these  four  profiles is a measure of the  loss  in  resolution 

(i.e.,  departure  from a delta  function  at z = z o ) ,  which  increases  as p 

decreases.  The  width of the  profile  can  be  defined  in a number of ways,  e.g., 

the  distance  between  the two points  on  the  profile, Cn ( z ) ,  where 

Cn (z)  =-C (zo ). We choose  rather  to  define  the  width  as  the  distance 

between  the  points, z l ,   z2   c loses t   to  zo where   S(z l )  = 1 and  S(z2) , 0, respec- 

tively.  Referring to Figures 4 and 5, it   can  be  seen  that  this  gives a width 

m 

2 

2 1 2  
2 n  
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Figure 4 .  Calcula ted   in tegra ted   tu rbulence   p rof i le  S ( z )  f o r   d e l t a - f u n c t i o n   p r o f i l e ,   v e r s u s  z/z 
2 

0 

f o r  pmk/4zo = 12 .5 ,  25,  50 and 100. 
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about  one-third  larger  than  the  width  defined  between  the two F C ~  ( z o  ) points. 

Note  that  the  integrated  turbulence  under  the  portion of the  profile z C z  C z 2  

equals  the  total  integrated  turbulence;  the  integrated  turbulence  outside 

z C z < z is as  much  positive as negative,  with a net area of zero. 

1 2  

2 

In  Figure 6 we have  fitted a straight  line (A) to  the  points  taken  from 

Figure 3c and  other  results  not  shown for  z / z  f rom .92 to .98, of the one- 

crossing  closest   to z and from  Figure 3g and  other  results  not  shown  for 
z / z o  f rom 1.02 to 1.08, of the  zero-crossing  closest  to z (B). Figure 6 is a 

plot of I 1 - zLy  /zol  versus p 2k/4z0,  where Q = 1, 2, correspond  to  the  dis- 

tance  from z to  the  one-crossing,  divided by z o ,  and to the  zero-crossing, 

divided  by z o ,  respectively. We have  also  plotted  the  normalized  width, D / z o ,  

defined by D = z 2  - z The  line  labeled C in  Figure 6 was  obtained by fitting 

a straight  line to the  points  found by adding  the  ordinates of the two lines A 

and B. The  slope of the  line C is  minus  one,  and we  obtain  the  relation 

0 

0' 

0 

m 

0 

1 '  

D 162 
- = 4 -  " 

Z 0 t fkj1 - Pm 2 k  0 
(3.12) 

The  coefficient 4 in  Eq. (3.12)  is   somewhat  arbitrary,  and  depends  on  the  par- 

ticular  way  in  which we defined  the  width.  The  inverse  dependence of D on  the 
variable p 2k/4z  is   reminiscent of the  identical  relationship  occurring  in 

Fourier  transforms. D may  also be  interpreted  more  generally  as  the  spatial  

resolution  obtainable  in  an  arbitrary  turbulence  profile.  Thus,  at  range  z, 

variations  in  the  profile  that  occur  in  distances  less  than D = 16 z / pm2 k 
cannot  be  resolved. 

m 0 

2 

E.  Dependence of Spatial  Resolution  on  Step-Size 

In our  numerical  studies,  the  integral  transforms  appearing  in  Eqs.  (1.10) 

and (3.10) are  approximated by sums. In most  actual  measurements of BX (p) ,  

the  correlation  function  will  be  measured  at a discrete   set  of points, pi ,  in  the 

range 0 < pi < pm . Thus,  the  natural  way to handle  the  inversion of an  experi- 

mentally  obtained  correlation  function is by performing a sum  rather  than  an 

integral.  In  addition  to  the  sensitivity of the  profile  calculation  to p m ,  which 

was  considered  in  the  last  section,  there is also a dependence  on  the  number 
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c. Normalized  width,  

F igure  6 .  Wid th   o f   ca l cu la t ed   p ro f i l e   ve r sus  P k/4zo.  2 
m 

A.  Normalized  distance  from z t o   c l o s e s t   o n e   c r o s s i n g   o f   S ( z )  , 
B .  Normalized  distance  from z t o   c l o s e s t   z e r o   c r o s s i n g   o f  S ( Z ) ,  

0 

0 

D/zo (sum of A and B) . 
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of elements  in  the  sum ( 2 , O O  1 in  the  above  calculations). By observing  the 
effect of varying  the  number of summands, we can  obtain a measure of the 

number of sample  points, p i ,  necessary  to  obtain a given  precision  in  the 

calculated  integrated  profile, S ( z ) .  

We have  repeated  the  above  calculations  with a smaller  number of sum- 

mands.   Representative  results  are shown in  Figures 7, 8 and 9 for   z /zo = 0.4, 

0.8, and 1.2, respectively.  The  results in  the  f igures  are shown for (a) 1,001; 

(b) 50 1; (c) 201, and  (d) 10 1 points. In Figure 10 we  show  the  integrated  pro- 

f i les  S ( z )  obtained  for pm%/4z = 100 and  the  five  different  choices of total 

number of terms  in  the  summation. 
0 

For  the  more  distant  portion of the  profile, z > z the  f ive  cases  are  in 

good agreement. But for  smaller  ranges,  the  calculated  profiles  depart  more 

f r o m  the  actual  profile  as  the  number of summands  decreases.  The  departure 

occurs  because we a r e  not sampling  enough  points  to  adequately  represent  the 

fine  structure  in  Figures  3a-3h  or,  equivalently,  in  the  kernel  function 

Im  {exp ( i ~ r / 1 2 )  F (11/6 I 1 I i p  k/4z)) of Eqs. (1. 1 0 )  and(3. l o ) ,  shown in Fig- 

ure  2. The  scale  size of the  kernel  becomes  smaller  as  z/z  decreases.  

O D  

2 

0 

By studying  the  detailed  behavior of the  calculations shown in  Figures 7 - 9  

(as  well  as  the  other  cases  performed but  not  shown in  this  report) we observe 

that  the  deviation  between  the  calculated  and  actual  profile  arises  mostly  from 

the  portion of the  integrals  taken  over  small p ( p  < <  p,). Therefore, we 

expect  that  better  results would be  obtained  for a fixed  number of summands, 

i f  the  sample  points  were  spaced  relatively  more  densely  at  small  values of p. 

In the  present  calculations, we  have  used  uniform  spacing  in p . Uniform 

spacing  in p should  be  more  advantageous,  and we will  rewrite  the  computer 

programs to  verify  this  assertion. 

2 

In a practical  application  it  is  important  to know the  number of points  at 

which  the  correlation  function  must  be  sampled.  For  example, if an   a r ray  of 

photomultiplier  tubes is utilized to obtain BX (p), the  required  number of tubes 

depends  on  the  number of sample  points  needed. 

According  to  Eq.  (3.12),  when pm2k/4z = 100, the  spatial  resolution, D, 

2k/4z0 = 100) indicate  that if this  resolution  is  required at z = z then  with 

0 
at z = z is 0 . 0 4 ~ ~ .  The  results  illustrated by Figure 10 (for  which 

P m  OD 

0 
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Figure 7. Calculated  integrated  turbulence  profile S(z) versus  pmk/4z  for 2 
0 

z/zo = 0 . 4 ,  for a (a) 1001, (b) 501, term  summation  approximation 

to Eq. (1.6) (upper  curve) and Eq. (3.10) (lower  curve) . 
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Figure 7 (c) z / z o  = 0 . 4 ,  201 term  summation 

(d) z / z o  = 0 . 4 ,  101 term  summation 
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Figure  8. C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e  S ( z )  versus  pmk/4z0 f o r  2 

z/z0 = 0.8,  f o r  a ( a )  1001, (b) 501, term summation  approximation 

t o  E q .  (1 .6)  (upper  curve)  and E q .  (3.10) ( lower  curve)  . 
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Figure 8 ( c )  z / z o  = 0.8, 2 0 1  term  summation 

(d) z / z o  = 0.8, 101 term  summation 
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.. . . .. . . - . . . ~ 

Figure  9.  C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e  S ( z )  v e r s u s  p k/4z f o r  2 
m 0 

z / z o  = 1.2, f o r  a (a)   1001,   (b)  501, term summation  approximation 

t o  E q .  (1 .6)  (upper   curve)   and Eq. (3.10) ( lower   curve) .  
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Figure 9 
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( c )  z / z o  = 1.2, 

(d) z / z o  = 1.2, 

8D.P 90.0  l C l . 0  

201 term  summation 

101 term  summation 
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. z  . 4  . b  1.U 
z / z o  

Figure  10. Calcula ted  

and  number 

i n t e g r a t e d   p r o f i - l e  S ( z )  f o r   d e l t a - f u n c t i o n   p r o f i l e  

of summands e q u a l   t o  2001, 1001, 501, 201 and 101. 

ve r sus  z / z  f o r  p:k/4zo = 100 
0 



200 terms  in  the  summation  the  profile  can  also  be  calculated  from B (p) at 

z = 0.42 and  that 1000 t e rms   a r e   necessa ry  to  calculate it at z = 0.12 . X 
0 0 

If we  relax  the  resolution  requirement at z = z and  thereby  reduce 
2 0’ 

p, , we  can, of course,  obtain  the  profile  at small values of z with 

correspondingly  fewer  terms.  The  number of te rms   requi red   a t  a small  value 

of z is inversely  proportional  to p 2 .  However, i t  is expected  that  with  uni- 

form  spacing  in p (rather  than p z )  we will  require  fewer  terms,  because 

the  number  required  for  calculating S(z) a t  z < <  z will  be  inversely  propor- 

tional  to p,. 

m 

0 
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IV. INVERSION OF CORRELATION  FUNCTION 
FOR A CONTINUOUS TURBULENCE  PROFILE 

A. Correlation  Function  for  Continuous  Turbulence  Profile 

We have  thus  far  studied  the  properties of the  inversion of the  correla- 

tion  function of a delta-function  turbulence  profile.  It is also of in te res t  to 

study  the  inversion  process when  the  turbulence  profile is a: smoothly-varying 

function of position.  For  convenience,  we  choose a particular  family of pro- 

gressively  more-sharply-peaked  smooth  curves  (whose  limit  is  the  delta  func- 

t ion)  for  Cnz(z),   for.which  i t   is   possible to obtain  analytic  expressions  for 

BX(p) .  In this  way we avoid  the  inconvenience of having  to  do  a numerical  

integration to  obtain B (p) .  X 

A suitable  turbulence  profile  is 

The  normalization of Eq. (4. 1)  is  such  that 

a3 

/Cn2(z)dz  = A c m  1 /3  . 
0 

Taking  the  z-derivative of Eq. (4. l ) ,  

we see  that   i t   vanishes when z=z  so that  the  peak of the  profile  occurs  at 

z=z  independent of p. A s  t ~ .  increases,  the  peak  becomes  narrower  and 

higher. We can  investigate  the  dependence of the  shape of the  peak  on p in  the 

following way. Let Cn ( z )  = exp (g). Then 

0’ 

0’ 

2 

g = log Cn2(Z) = log (A p;zp- l )  + p l o g z - p ~ .  Z 

0 

The first   derivative of g  with  respect  to z vanishes  at  z The  second  deriva- 

tive is 
0’ 
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In  the  vicinity of z=zo, g may be  approximatedby  the first two  nonvanishing 

terms  in   i ts   Taylor-   ser ies ,  

and  hence  Cn2 ( z )  is   approximated by 

in  the  neighborhood of z=z . Thus  we  find  that  in  the limit t - ~  >> 1, the  width of 

the  peak  varies  inversely as the  square  root of P. The  profiles  for p = 1, 2, 

and 4 a r e  shown  in  Fig. 11. 

0 

The  equation  giving  the  correlation  function BX ( p )  i n   t e rms  of the  turbu- 

lence  profile C ( z )   i s  2 
n 

Substituting  Eq. (4. 1 )  i n  Eq. (4. 6 )  we obtain 

r(8) 2 al 
a, 

A k /dKK -8'3 J O ( ~ p )  I d z  (er e-pz/zo  [i - cos (+) 
r I P )  z 

O O  0 
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where  we  have  interchanged  the  order of integration  and  made  the  change of 

variable e = pz/zo. 

The e -integral  can  be  evaluated. 

and 

Substituting Eqs. (4. 8)  and (4. 9 )  in  Eq. (4.7), we  find 

m 

B X ( p )  =T A & r(5) 8 k2 /dKK -8 /3  J O ( K p )  [ 1 - R e  [ ( 1 -i- K:ro)-p-l]]. (4. 10) 

0 

The f i r s t   t e rm  in  the  K-integral is  tabulated. 8 

The  second t e r m  is related to  a tabulated  integral, 9 

0 

(4. 11) 

(4. 12) 
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in  which 

(4. 13)  

i s  a hypergeometric  function.  In (4. 13),  (a), = qa tn ) /qa ) .   Equa t ion  (4. 12) is 
valid  when Re (p-' eiT 14) >O, and 0 C Re A < 2 Re )I t z. The  only  one of these 

three  requirements  not  satisfied  is  Re A > 0, since A = - 5/3 in  Eq. (4. 10). 

This causes  the  integral  in Eq. (4. 12)  to diverge at the  lower  limit.  However, 

the  singularities of the two terms  in  square  brackets  in Eq. (4. 10)  cancel  and 

the  integral  in  Eq. (4. 10) does  converge. By analytic  continuation with respect 

to  the  complex  variable X ,  the  difference of Eq. (4. 11) and Eq. (4. 12), with 

X = - 5/3,  is a valid  representation of Eq. (4. 10). Consequently,  Eq. (4. 10) 

becomes 

47 



Using  the  power series (4. 13)  for  the  hypergeometric  function, the cor-  

relation  function  (4.  14) ( w i t h  A = 1 cm'l3)  has  been  calculated  on the CDC 

6500 digital  computer.  The  results of the  computation  for p = 1, 2, and 4 are  

shown  plotted as a function of p k/4zo  in  Fig.  12. The p = 1, 2, 4 correlation 

functions  have  been  magnified 100 t imes  for p k/4zo 2 15, 8 and 7,  respectively, 

and  the  curves  calculated  to  pmk/4zo = 100, 58 and 27, respectively. It was 

not  possible  to  calculate  the  correlation  functions  for p = 2 and  larger,   to 

large  values of p k/4zo using  the  power  series (4. 13).  To  calculate  for 

la rger  p ' s  and  larger p " k / 4 z  requires   use of asymptotic  expansions  which are 

apparently  not  in  the  literature  for  the F hypergeometric  function. W e  hope 

to  obtain  them  in  the  future  to  make  possible  calculation of correlation  func- 

tions  for  profiles  with  sharper  peaks  (but  not so sharp  as  the  delta-function, 

p = a). We see  by  comparing  the  correlation  functions  shown  in  Fig. 12 ( p  = 1, 

2, 4 )  and  Fig. 1 ( p  = a) that  the  functions  have  more  oscillations  in  their tails 

a s  p increases.  The  value of p at   the  first zero-crossing  decreases   as  p in- 

creases,   varying  from p k/4z = 3. 2 for  p=1  to p k/4z = 1.07  for p=m. 

2 

2 

2 

2 

3 

0 

1 2  

2 2 
0 0 

The  functions S ( z )  corresponding  to Eq. (4. 1)  were  obtained  using  tables 

of incomplete  gamma  functions  and  are  shown  in  Fig. 13. In the  limit p--a, 

the  profile of Eq.  (4. 1 )  becomes a delta  function, 

(4.  15) 

Consequently,  the  correlation  function of Eq. (4.  14)  must  become the correla-  

tion  function of Eq. ( 3 .  1 ) in  the limit p-m. 

We now demonstrate that this is   actually  the  case.   The  f irst   term  in 

Eq. (4. 14) i s  

(4.  16) 
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Figure 12a. The logarithmic-amplitude correlation function, B X ( p ) ,  for Cn(z) % ( z / z o )  exp ( - Z / Z o >  
2 

versus p k / 4 z  (vertical scale arbitrary, lOOX  magnification  for p k/4z > 15). 2 2 
0 0 



Figure 12b. The  logarithmic-amplitude  correlation  function, B X ( p ) ,  for c,(z) 2 % ( z / z 0 )  2 exp(-2z/zo) 

versus p k/4z  (vertical  scale  arbitrary,  lOOX  magnification  for p k/4z > 9). 2 2 
0 0 



Figure 12c. The logarithmic-amplitude  correlation  function, B X ( p ) ,  for Cn(z) % ( z / z o )  exp(-4z/zo) 2 4 

versus p k/4zo  (vertical  scale  arbitrary,  lOOX  magnification  for p k/4zo > 7). 2 2 
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0 

Figure 13. The incomplete gamma f u n c t i o n  6' e-' d</r(cl+l)  versus z / z o  for u = 1, 2, and 4 .  

W / Z o  



which i s   s een  to  be  identical t o  the  second term of Eq. (3 .  l ) ,  i f  we  note  that 

The  p-dependent  part of the  second term i n  Eq. (4. 14) is  

F o r  large P we  obtain 

1.im pn = ( -1)  , n 

n 

and,  using  Stirling's  formula, 

- 5 / 6  = lim e 

= lim e -516 (1 t t)" 

(4. 18) 
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Substituting  the  limits of Eq.  (4. 18) and (4. 19) i n  Eq. (4. 17) w e  find 

(4.20) 

where  F(a  1 b I w) = F (a I bl w) i s  the  confluent  hypergeometric  (Kummer) 

function.  Substituting  (4.  20)  in  Eq. (4. 14),  we  obtain  for  the  second  term i n  

Eq. (4.  14) i n  the l imit  of large p, 

1 1  

where we have  noted  that - a r (- 2) = r (i) ,  and  have  taken  the  complex  conju- 

gate of the  quantity in brackets to obtain  the  equality.  Since e 

- e  -i75r'12, Eq.  (4.  21) is   ident ical  to  the f i r s t   t e rm  in  Eq. (3 .  1).  Thus,  the 

f i r s t  two te rms   in  Eq.  (4.  14), in  the  limit p-m, reduce to  Eq. ( 3 .  1).  It i s  now 

necessary to show  that  the  last  term  in  Eq.  (4.  14)  vanishes  in  the  limit p-m, 

and  therefore Eq.  (4. 14)  in  the  limit p*m reduces to  Eq. ( 3 .  1). 

5 

i 5 ~  /12 - - 

The limit  of the  p-dependent  part of the  third  term  in Eq.  (4. 14 )   i s  

r ( - p  - y )  
r p t -  

17 17 i p  kp 2 -ipT / 2   p t l  lim e P ( 17) lF2 (ptl I p t  6' p + 5 1  4z0 ) 
6 

(4.22) 
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The p d a  limit of the s u m  in  (4.22) is 

Q) 

ip2k/4z0 

n=O 

Using  Stirling's  formula, 

so that  the  limit of Eq. (4. 2 2 )  is  

11 
1 - iPT/2  - P - 3  lim - csc  TT 2 

P-w 
e = 0 .  (4. 23)  

B. Numerical  Inversion of Equation (4. 14) 

The  results of the  numerical  inversion of the  correlation  function  (4.14) 

with p = 1, 2 ,  and 4 a r e  shown  in  Fig.  14,  15,  and  16,  respectively  as  func- 

tions of p 2k/4z0,  The  calculations a r e  shown for  z/z = 0.1  and 1. 0. The 

number of summands  in  the  calculations  was 2 ,001 .  The  upper  curves  (right- 

hand scale)  are  the  inversions of Eq. (1.10);  the  lower  curves  (left-hand 

scale)  are  the  inversions of Eq. (3 .  l o ) ,  with 

m 0 

00 

z Cn (z)dz = z (p+l)(p+2)/p . 2 2  2 2 
0 

0 

The  improvement  in  convergence  using Eq. (3.10)  rather  than  (1.10) is 

apparently  more  significant  in  these  calculations  than  it  was  in  the  delta- 

function  case.  The  reason is that  the  relatively  less  oscillatory  correlation 

functions  (4.  14)  for  the  smooth  profiles,  are  more  closely  represented  for 

large p by the first term  in  their  asymptotic  expansions,  (1.1 1 ), than is the 

more  oscillatory  delta-function  correlation  function,  (3.1 ). Consequently,  the 
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Figure  1 4 .  C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e   f o r  1-1 = 1 v e r s u s  

P ~ W ~ Z ~ .  (a> z / z o  = 0.1, (b! z / z  0 = 1.0 .  
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F i g u r e   1 5 .   C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e  for p = 2 v e r s u s  
,-I 

p;k/4zo. (a )  z / z o  = 0.1, (b)  z/zo = 1.0. 
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Figure  16. C a l c u l a t e d   i n t e g r a t e d   t u r b u l e n c e   p r o f i l e   f o r  = 4 ver sus  
2 p,k/4zo. ( a )  z / z o  = 0.1, (b) z / z o  = 1.0. 
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The  large-p limit of the  twelve  lower  curves  in  Figs.  14-1 6 f i t  exactly, 

within  the  precision of the  calculations, on the  integrated  profile  curves  shown 

in  Fig. 13. It  can  be  seen  that  the  calculation of the  smooth  profiles  from Eq. 

(3.10)  shown  in  Figs.  14-16  converges  for  much  smaller  values of p than  the 

calculation of the  delta-function  case  shown  in F i g s .  3a-3h.  This is in  gen- 

eral  accord  with  Eq. (3. 1 2 ) ,  which  predicts  that  the  value of p required  for 

convergence of Eq.  (3.10)  decreases  as  the  profile  becomes  smoother. 

m 

m 

However,  the p. = 1 ,  2,  and 4 profiles  shown  in  Fig.  11  are  outside  the 

range of validity of Eq. (3. 12) .  For  these  profiles,  D/zo > 1 ,  and Eq. (3. 12 )  

would predict pm k/4zo < 4. Clearly,  there  is a lower  limit  on  the  value of 

Pm 

2 

2 k/4z  for  which  Eq. (3 .  1 2 )  is  applicable. We would expect  that  it  could 
0 

not  be  valid  when  it  predicts pm of the  order of p the  f irst   zero-crossing of 

the  correlation  function. 
1’ 

We observe  from F i g s .  14-16  that  the  required pm actually  increases  as 

p. decreases   f rom p. = 4 to p. = 1. This  is  evidently  because p increases 

f rom 1 . 6  (42 /k) to 3. 2 (4z0/k) as  p. varies  from 4 to 1 .  The  asymptotic  value 

for   large p (Fig. 1 ) is  p1 = 1 .  07 (42 /k). It would be of interest   to   carry out 

the  inversion  for  larger  values of p. in  order  to  verify  the  asserted  applicabil- 

ity of  Eq. (3.12)  to  smooth  profiles. In the  range 8 < p. <800 the  width D, 

between  the  l/e  times  maximum  points of the  profile (4. l ) ,  is in  the  range 1 

> D > 0.1,  according  to Eq. (4. 5). An attempt  will  be  made  in  the  future  to 

calculate  the  correlation  function  (4.  14) by obtaining  asymptotic  formulas  for 

1F2 (pt l   (pt17/6,p. t17/61ip.y)  and F (-5/61  -5/6 - p., 1 I ipy)  for  large p. 

1 

0 

0 

1 2  
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V. NOISE 

A. Derivation of Relation  between  Noise  in S( z)  and B ( p ) x 
In Sections I11 and IV we considered  the  effect of truncating B Y ( p )  at  

a finite  value of p .  The  result  was a loss  in  spatial  resolution  in  the P r n ,  
calculated  profile S( z )  as  given  by Eq. (3 .  12). It is necessary  to  truncate  in 

any  practical  application,  because Bx( p )  becomes  small   for  large p (see 

Figs.  1 and 12  and  Eq. (1. 7))  and  eventually,  for p > p the  noise  in  the 

measurement of BX( p )  dominates  the  signal. In the  above  analysis,  however, 

we  have  not  included  the  effect of noise  in B ( p )  for  p < p o r  given  any 

considerations  to  the  determination of the  value of p which  should be used 

in a practical  application of Eq. (3 .  10) for  calculating  real  turbulence  profiles. 

We  do so in  this  section, by  deriving a relation  between  the  error  in  the 

calculated S ( z )  and  the  noise  in B ( p ) .  

m’ 

x m’ 

m 

X 

An experimentally  obtained  correlation  function  consists of a sum of the 

correlation  function, BX(p) ,  and noise ,  N ( p ) .  If we define 6 S ( z )  to  be  the 

e r ror   in  S ( z )  resulting  from  the  noise,  then  from Eqs. ( 3 .  10) and ( 3 .  11) we 

obtain 

The  mean-square  error   in  S ( z )  is  found by squaring  and  averaging 

Eq. (5. 1). 
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where  we  have  introduced  the  quantity 

In a practical  application,  the p integrals  in  Eq. (5. 2) are   replaced by 
s u m s .  If we assume  that  the  correlation  function is sampled  at  the  points 

pj = jA  p , (5.4) 

where j takes on integral  values  between 0 and m = p /Ap,  and A p  is   the 

spacing  between  points,  the  first.  double  integral in  Eq. (5. 2) becomes 
m 
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To obtain Eq. (5.5),  we  have  assumed  the  spacing  to  be  uniform  in p since, 

as  was  stated  in  Sec. 3, we expect  this  to  give  improved  spatial  resolution 

compared  to  uniform p spacing, fo r  a  given  number of sample  points, m. 

We assume  in Eq. (5.5)  a simpler  trapezoidal  summation  approximation, 

rather  than  Simpson's  rule  which  was  used  in  our  computer  calculations,  but 

we  do not  expect  this to effect  the  results  significantly. 

2 

Before  proceeding  further, to evaluate  the  summation  (5.5)  it  is  neces- 

sary  to  assume a  functional  form  for  the  noise  autocorrelation  function 

<N(pj) N(pl )>. If the  noise  at  distinct  sample  points  is  uncorrelated,  then 

where 6 i s  the  Kronecker  delta  and v is the rms noise  amplitude  at p .  

Equation  (5.6) is a correct  description f o r  example, if B X ( p  j )  and B X ( p  1) a r e  

measured  with two distinct  pairs of photomultipliers.  It  is  also a correct  

description i f  the  logarithmic  amplitude X is   recorded on  a photographic film 

( a s  in  our  laboratory  experiment  described  in  Sec. VI) for which  the  grain  size 

is small  compared to  the  spacing A p .  

j a  

Substituting Eq. (5.6)  in Eq.  (5. 5) one of the s u m s  can  be  evaluated, 
resulting  in  the  sipgle  sum 

M 

j =O 

0 
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The s u m  in (5. 7) is  approximated  by  an  integral.  From  the  definition (5. 3) 
and  the  asymptotic  formula (3 .  5) it is seen  that Q is   proportional  to p 16’3 f o r  

large p.  Thus,  unless v 2 ( p )  is proportional  to a large  negative  power of p , 
the  integral  in Eq. (5. 7) is dominated  by  values of p near  pm, where  the 

asymptotic  formula  (3. 5) is valid. We thus  can  approximate Q by its asymp- 

totic  form.  Similarly, we can  approximate v 2 (p ) in  the  integrand  by 

v 2  = v 2 (p,) . (5- 8)  

With  these  assumptions, we obtain  for  the  right-hand  side of Eq. (5.7), 

2 

v 2 A p  pm dp [p I m  F (y 11 I i p  4z 2k )]] 
0 

Using Eqs. (5. 5 ) ,   ( 5 .  71, and (5. 91, we obtain f o r  the f i r s t   t e rm in 
Eq. (5. 2) 

4 3  -5 /3  2 11/3 5 1 2  k Z v (AP/P,) (Pm2 d 4 Z )  ( 5 . 1 0 )  

19  TT r (8/3) 2 2  

The  same  calculation  has  been done for  uniform spacing, A p  , in p by 

making  the  appropriate  modification  to  the  finite s u m  approximation  in 

Eq. (5.5). The  corresponding  result f o r  the f i r s t   t e rm  in  Eq. (5. 2) is 

2 2 

-7 /3  -5/3 2 2  11/3 16 k 2 v (Ap 2 / p m  ) ( p m  k/4z) 

T r (8/3) 
2 2  (5.10‘) 

which is 0.6 times  as  large  as  (5.10). 
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W e  have  repeated  the  procedure of Eqs.  (5.4)  through (5. 10)  to  deter- 

mine  the  second  and  third  terms  in Eq. (5. 2) ,  for  uniform p spacing. We 
merely  give  the  results,   which  are 

respectively.  Expressions  (5.  11)  and (5. 12) a r e  of magnitude 0. l ( p  2k/4z)-2 

and 3 (  ~ ~ ' k / 4 z ) - ~  times  (5.10)  respectively,  and  hence  are  negligible  com- 

pared  to  (5.  10).  Taking  the  square  root of (5. l o ) ,  we  therefore  have  for  the 

rms e r r o r  in S ( z ) ,  for  uniform  increments  in p , 

m 

7/6 z-5/6 11/6 
16 d2 k- v ( pm2k/4z) 

7 - 3 (5.13) 
L 

and,  taking  the  square 

According  to  Eqs.  (5. 1 

J19 IT r (8/3) dm 

root of Eq.  (5. l o ' ) ,  for  uniform  spacing  in p 2 

-7/6  -5/6 2 11/6 
1/2 - 4 k z (Pm k/4z) 

- (5. 13') 

3) and  (5.  13'),  the rms e r r o r   i n  S( z) is  proportional  to 
the rms noise  in 

points m [: pm/Ap 

( pm2 k/4z)l 1/6 . 
B X ( p ) ,  inversely  to  the  square  root of the  number of sample 

in Eq. (5. 13)  and p, / ( A P ) ~  in Eq. (5. 13')],  and  to 2 

B. E r r o r  in a Calculation of B X ( p )  f r o m  a Finite  Intensity  Record 

The  correlation  function, B X ( p ) ,  is determined  by  calculating  the 

ensemble,  time,  or  space  average  indicated  by  Eq. (1. 1). It is necessary  to 

per form the average  over a logarithmic-intensity  sample of infinite  size, if 

B X ( p )  is to  be  determined  exactly. In practice,  one  must  settle for a finite 
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sample.  The  average  over a finite  sample, I ,  of the  logarithmic-amplitude 

is denoted by BX(p ). The  sample  function IBx(p)  is a random  function 

which  approaches  BX( p ) as the  sample  size  gets  larger.  The  variance B BX 
in a se t  of measurements  of BX(p ) is related  to  the  sample  size of the 

X (r,  t) record  utilized  in  each  measurement. If a one-dimensional  spatial 

average is performed  over  a distance L, for a normal  random  noise  process 

such  as  X(r,  t),  

I 
2 

I 

Equation  (5. 14) gives  the  mean-square  deviation of the  correlation 

function  calculated  from a spatial  average of a sample of length L, f rom  the 

true  correlation  function  (calculated  from a sample of infinite  length). 

We will  consider  the  effect of finite  sample  size on  the  calculation of 

the correlation  function from empirical  intensity  data  when  the  turbulence 

profile  is  a delta  function, In this  case,  we  have  found from  our   numerical  

computation of B (p  ) that  the  correlation  function  BX( p ) has   i t s   f i r s t   ze ro  

crossing  at p = 1.04 d q  and fo r  p >> J4-,/k it   falls  to  zero  rapidly  (as 
X 

P -7/3). If the  sample  length is large,  i. e . ,  L >> 4 4 x  0 the  factor (L-c ) in 
Eq. (5. 1 4 )  may  be  replaced  by L and Eq. ( 5 . 1 4 )  approximated  by, 

L 

A 

0 

Again,  since  B (p  ) approaches  zero  rapidly  for  large p , when p >> /4z0/k 

the  second  term  in  brackets  in Eq. (5 .  1 5 )  is negligible  compared to  the f i r s t  

and we obtain  for  large p , 

x 

L 

In obtaining  the  second  equality  in Eq. (5. 16)  w e  have  used  the  fact  that BX is 

an  even  function.  The  variance IT (p, L) decreases  from its  value  at p = 0 
Bx 
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to  one  half  that  value  when p >> Jq. If L is large,  that is, L >> Ja, 
the  variance  becomes  inversely  proportional  to L. 

0 

The  function  BX2 ( p )  f o r  a delta-function  turbulence  profile is plotted 

versus  p J x i  in  Fig. 17. A numerical  integration of this  function  yields 

(5.18) 

where we have  defined p by po = J4z0b,  and  we  have set  the  upper  integra- 

tion  limit  in Eq. (5. 16) equal to infinity,  which is a  valid  approximation f o r  
0 

L >> P o .  

Formulas  (5.  16), (5. 17) and (5.  18)  allow us  to calculate  the  sample 

length, L, required f o r  a  given  standard  deviation, IJ , in an experimentally 

determined  correlation  function. We would now like to combine  this  with  our 

ear l ier   resul ts  in order  to  relate L to the  standard  deviation, rS =(<(as) >) , 
in  the  integrated  profile. From Eq. (5. 13) we  obtain f o r  the  ratio of the 

standard  deviation  in  S(z) to  the  standard  deviation in B X (  p ) ,  

BX 

2 1/2 

7/6 z -5/6 (p k/4z0) 16 42 k- 
1 1/6 

=b5 - 0 
" 

m (5 .  19) 

where  we  have  replaced Y by vB and let  z = z F r o m  Eq. ( 3 .  1) we  obtain 
X 0. 

where S ( 0 )  = A i s  the total integrated  turbulence.  Using  this  formula  in 

Eq. (5. 19), we obtain 

(5.20) 
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B2 
X 

Figure  1 7 .  The s q u a r e   o f   t h e   c o r r e l a t i o n   f u n c t i o n ,  B y ( p ) ,  f o r   d e l t a - f u n c t i o n   p r o f i l e ,   v e r s u s  2 

h 2 k / 4 z  ( a r b i t r a r y  vertical  scale). 
A 

0 



4 

Substituting  the  ratio [r /bx(0) f o r  a sample of length L f r o m  Eq. (5. 18) in 
Eq. (5. 20), we find 

BX 

indicating  that  the  relative  error  in the calculated  value of S ( z o )  is inversely 

proportional  to  the  square  root of the  number of discrete  sample  points, m, 
taken  in the measured  B X ( p ) ;  inversely  proportional  to  the  square  root of the 

To  give a specific  numerical  example, we solve  Eq.  (5.2 1) for  L, and 

calculate  the  required L fo r  a ten  percent rms e r r o r  in the integrated  profile 

i. e. , [D~ /S(O)  = 0. 13; pm2k/4z = 25, which  according  to  Eq. (3.  12) c o r r e -  

sponds  to a spatial  resolution of  D/z = 0. 16; and fo r  50 sample  points  in  the 

correlation  function.  The  result is  L/po = 1. 3 x 10 . The  standard  deviation 

of the  correlation  function  in  this  numerical  example,  obtained  from Eq. 
(5. 20), is  LT = 3 x BX(0). 

0 

0 4 

BX 
We now consider  application of these  results  to an experimental  situa- 

tion. First, let   us  consider  the  case of a laboratory  experiment  in  which  we 

have  grid-generated  turbulence  in a wind  tunnel  at a distance z f r o m  a l inear  

a r r a y  of photomultipliers. A laser  beam  propagates  through  the  turbulence. 

If D is the  path  length  through  the  turbulence  and D << z the  turbulence 

profile  may  be  approximated  by 

0 

0’ 

Cn 2 (z) = C D 6 ( z - z o )  , no 

s o  that  the  above  results  for a delta-function  profile  are  applicable.  Taking 

the  total  propagation  path  length z = 10 cm, we  obtain p = &$ = 0. 18 cm, 

and  hence L = 2 . 3  x 10’ cm. 

3 
7 -  0 0 

The  photomultipliers  allow  us  to  record  intensity as a function of time 

at  selected  points  along a line  perpendicular  to  the  propagation  path.  The 

correlation  function  can  then  be  calculated by averaging  over  the  time,  the 

s ignals   f rom  pairs  of photomultipliers, 
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where 

The  true  correlation  function is given by 

N 

(5.22) 

(5. 24) 

The  turbulence  is   moving  across  the  laser  beam  with  the  mean  velocity,  

V ,  of the  wind  tunnel. As a consequence,  the  intensity  pattern  at  the  detector 

a r r a y   i s  a l s o  moving  with  velocity V. (This  makes  the  assumption  that  the 

changes  in  the  turbulence  is  negligible  in  the  time  it  takes  to  cross  the  beam, 

so that  the  time  variation  at a fixed  point  in  space  is due  to  convection. ) We 

therefore  have, 

and  hence,  from Eq. (5. 22) , 

T 
I B x ( p ,  T) = $ 1 [X(x-Vt, 0) - <X>] [ X ( x +  p -Vt, 0) - <X>]dt 

0 

where L = VT. The  time  average,  which  is  actually  done  over a t ime  inter-  

val  T,  is  therefore  equivalent  to a spatial  average  over  the  distance L = VT. 

The  time  interval  required  for  averaging  is T = L/V = 3. 4 sec fo r  V = 15 

mph = 660 cm/sec, po = 0. 18 cm, and L/po = 1.3 x 10 . 4 
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The  second  case  we  consider is the  same  laboratory  configuration 

except  that  the  detector is  a photographic film plate  which is exposed to the 

laser   beam  for  a short  time  (during  which  the  turbulence  undergoes a 

negligible  change).  This is  most  easily  accomplished  using a pulsed  laser. 

A spatial  average is performed  over  the  photograph,  and if necessary,  sub- 

sequently,  an  average  over a number of photographs. To make  efficient  use 

of the  information  recorded on  the  photograph,  to  obtain  a  sample of BX(p), 

we  can  average  over  all  pairs of points  whose  separation is p = , but 

there is no need  to  restrict  the  direction of to be  parallel  to  the x-axis 

as   was  done fo r  the  l inear  array of photomultipliers  just  discussed. It 
would  be  desirable, f o r  the  purpose of calculating  the  variance of BX 

measured   f rom a  single  photograph, (p  , X, Y)  (X  and Y are  the  sides 

of a rectangular  photograph) to generalize Eq. (2)  to two dimensions. 

This  will  be done in  the  future.  However,  without  this  generalization,  it 

is  still   possible  to  estimate crB ( p ,  X, Y). In Fig. 18 we  show  a photo- 

graph  with a rectangular  grid o ? points  with  spacing p . From  each 

point  we  draw  a  semicircle of radius p as  illustrated. If we neglect  edge 

effects  (or, if p << X and Y) there   are  XY/pO2 such  semicircles  for  each 

value of p . From  each  semicircle  we can  compute a sample of BX(p),  

=BX 

2 

0 

lr 

I B X ( p )  = T F ~  1 / [X(x,y)-<X>][X(xtpcos+,  y t p s i n + ) - < X > ] p  d$, ( 5 . 2 7 )  

0 

where cp i s  the  polar  angle  about  the  center of the  semicircle. 

Because of the  statistical  isotropy of the  intensity  pattern on the 

photograph,  the  integral  in Eq. ( 5 . 2 7 )  is  equivalent to  the  integral  in 

Eq. (5 .   26) ,  with L replaced by np . 
variance of the  sample  correlation 

c i rcu lar   a rc ,  

F r o m  Eq. (5 .  18), we obtain f o r  the 

functions  obtained  from  each  semi- 

( 5 . 2 8 )  

I 
\ 

Because  the  centers of the  semicircles  are  separated  by p and 
0’ 

there   i s  no duplication of pa i r s  of points  (except  for  the  end-points of the 
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Figure 18. Diagram  for  estimating  the  effective sample size of a  rectangular  photographic 

intensity  record. 



semicircles),  we  obtain  essentially  independent  samples  from  each  arc. 

If we  calculate  the  average of all  the  semicircles on the  photograph,  the 

variance of this  average  is  Eq. (5.  28) divided  by  the  number of semi- 

c i rc les ,  x y / p 0  2 , 

If, as  above, we require u /Bx(0) = 3 x l o m 3 ,  and take po = 0. 18 
BX 

cm,  then  the  required  area of photograph i s  

- 6 8  po3 Bx2(0)  
XY = = 7 .3  x 10 2 %  

= P  0- 2 P 
B X  

Since  the  inversion  is  most  sensitive to noise  at  the  largest  values 

of p used  in  the  integration we calculate  the  area XY required to have 

uBX 
(5p0, X,  Y)/Bx(0) = 3 x which i s  

XY = 1.5  x 10 c m  . 2 2  

If each  photograph  is 10 cm2 in  area, 15 photographs  are  required. 

(5.  30) 

(5 .3  1) 

7 3  





VI. EXPERIMENT 

A.. General  Description 

The  experimental  efforts  under  this  contract  have  been  directed  toward 

verifying  the  results of the  theoretical  study of clear-air  turbulence  detection 

by optical  means.  In  general  the  experiment is designed  to  produce  artificial 

turbulence,  illuminate  it   with a laser  beam,  photograph  the  random  diffraction 

pattern  produced  in  the  beam,  reduce  the  optical-density-versus-position  data 

to  frequency  modulated  signals on magnetic  tape , and  from  this , calculate  the 

correlation  function of Eq.  (1.  1). We have  set  up  the  complete  system  and 

have  begun  to  obtain  data.  This  system  includes  the  laser  light  source,  arti- 

ficial  turbulence  source , camera  and shutter,  photodensitometer,  associated 

f .  m. equipment,  and  tape  recorder,  as  well  as  the  use of a suitable  computer, 

digitizer  system  and  associated  computer  program. 

Figure 19 is  a flow diagram of the  clear-air  turbulence  detection  exper- 

iment  showing  the  necessary  equipment  and  processes,  including  that  required 

for  data  reduction  and  computation.  The wind  tunnel  in  the  diagram is a slow- 

speed  model  with  optical-glass windows  and a 5 hp  blower. A photograph of 

the  tunnel is shown  in  Fig. 20. Preliminary  tests  were  made  using a 1 KW 
heater of approximately 4 square  inches  cross  section  substituted  for  the  tur- 

bulence  source. 

The  camera,  shown inFig.  2 1 ,  is used  to  photograph  the  diffraction  pat- 

tern of the  laser  beam  which  has  passed  through  the  turbulence.  The  photo 

transparency  thus  obtained is the  primary  data of the  experiment. Although 

only  one  photo is shown  in  Fig. 19,  actually  many  will be used  to  make one 

profile  calculation,  as  indicated  in  Sec. V. B. As the  diagram  in  Fig. 19 

shows,  the  range, z between  the  turbulence  and  the  camera  can  be  varied. 

This , along  with  variations  in  the  intensity  and  type of turbulence  will  allow  us 
to  verify  the  theory of remote  sensing of turbulence  profiles. 

0’ 

B. Laser  Light  Source  and  Camera 

The first experimental  efforts  were  directed  toward  construction  and 

testing of equipment.  The  pulsed  argon-ion  laser  shown  in  Fig. 2 2 ,  was 
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F igu re  1 9 .  Flow  Diagram of Clear-Air Turbulence  Experiments 
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I -  

F i g u r e  20. Wind  Tunnel 

Figure 21. Camera  with  Synchronized  Shutter 
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Figure 2 2 .  Argon-Ion Laser 



tested  with a modified aircraft camera  and  shutter.  The  lens  was  removed 

from  the  camera  and  only  the  synchronized  shutter  was  used.  This  triggers a 

single  pulse  from  the  argon laser which  exposes  the film plate.  The  laser 

delivers  approximately 50 watts  peak  power  with a pulse  length of approxi- 

mately 3 0  microseconds.  This is total  power  in all colors  and all modes. We 

have  not  measured  single-color,  single-mode  power.  However we can 

assume  that  over 30% of the  power is in  the.TEM  mode  at 4 8 8 0 k  This is 

more  than  enough  energy  to  properly  expose  our film. We have  planned  sev- 

eral  improvements  to  the  system.  These  include  beam  scraping,  filtering, 

and  an  aperture  within  the  laser  cavity  for  mode  selection. 

00 

Using  the  optics  and camera  described  in  this  report, we have  photo- 

graphed  various  forms of experimentally  generated  turbulence.  Light  intensi- 

ties  greater  than  necessary  for  proper  exposures  were  obtained, so  that  neu- 

tral  density  filters  were  used  in  the  beam  for  all  photographs. At present,  we 

feel  that  with  planned  improvements , the  light  source  and  optics  will  meet  the 

requirements of the  experiment. 

A typical  photo of our  laser  beam  after  traversing  the  laboratory- 

created  turbulence is shown  in  Fig. 23. The  granularity  or  scaly  character of 

the  disturbed  beam is similar  to  observations of that  produced by natural  tur- 
bulence  at a height of a few meters  above  the  ground.  The  photo  in  Fig. 23 

was  obtained  with  the  laser 13 meters  from  the  f i lm  plane,  and  the  turbulence 

source 1 meter   f rom the laser.  This  gives a range of 1 2  meters   for   this  film. 

Other  photographs , taken  at a range of 8 meters,  clearly  contain a 

smaller  scale  size  in  the  intensity  pattern  as  indicated by the  theory  [Eq. 

(3 .  1) predicts  scale  size - (zo/k) 1 /2 3. 
The  beam  has  also  been  observed  with  the  laser  free-running.  In  this 

mode,  images of the  disturbed  beam  are  observed  and  integrated  by  the  eye. 

When observed  in  this  manner,  the  image  loses its granular  nature  and  tends 

to  have  dark  bands  running  through  the  beam.  Although  this  time-integrated 

effect is interesting,  only  single-pulse  photographs can be used  to  obtain  the 

correlation  function (1. 1). 
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Figure 23. Photograph of laser  beam  after  traversing  experimentally 
generated  turbulence 
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C. Turbulence  and  Grid  Design 

Considerable  effort  has  been  expended  in  the  study  and  design of a 

heated-wire  grid  for  generating  turbulence.  Our  early  efforts  included  use of 

a 3-kilowatt  unidirectional  grid  and a wind  tunnel  flow  velocity of 50 ft/sec. 

This  arrangement  did  not  create a visible  change  in  the  laser  beam.  The 

result  substantiated a theoretical  extrapolation of experimental  data, l2  which 

predicted  that a power of about  35 K W  would  be required  for  the  tunnel  as  ini- 

t ial ly  set  up. It  is  not  possible  to  obtain  35 K W  of electrical  power  for  this 

purpose  at  the  present  test  site.  Therefore,  the wind  tunnel  velocity  was 

reduced  to 11 ft/sec (7. 5 mi l e s /h r )  by changing  the  blower  drive  ratio. At 

this  velocity,  the  initial 3 K W  grid  produced  visible  turbulence  when  illumi- 

nated  with  the  laser  beam. In the  latter  case,  actual  heating of the  flow  could 

be felt  when one placed  his  hand  in  the  operating  tunnel. 

This  unidirectional  grid  was  constructed  strictly  for  power  measure- 
ments,  and  the  element  spacing  was  too  large  to  give  the  proper  turbulence 

spectrum. We expect  better  efficiency  and  visible  diffraction of the  beam 

when we use  the  proper  spacirlg.  The  grid we are  presently  constructing 

should  do  this  as  well  as  give us the  proper  turbulence  spectrum. 

In designing  our  latest  heated  grid we have  attempted  to  follow  estab- 

lished  aerodynamic  practice"  to  produce a known turbulence  spectrum. In 

this  way we may be able  to  eliminate  the  necessity  for a hot-wire  anemometer 

study  and  survey of the  turbulence.  The  filling  factor  (ratio of blocked area  to  

total   area)  for  the  grid  was  set   at   1:5 s o  that  existing  data  could be used  to 

predict  the  turbulence  spectrum.  Scale  size  was  held  at  approximately 0. 10 

inch  between  centers of #22 Nichrome  wire. 

Figures 24a  and b give  the  important  details of the  grid's  construction. 

I t  is designed  to  take  approximately 10 K W  maximum. We have  shown  only 

one  unidirectional  grid.  The  second  grid  is  nearly  identical  except  that  the 

wires  are  strung  across  the  long  dimension of the  f rame and  that  the  springs 

are  also  running  in  this  direction  to  allow  for  the  thermal  expansion of the 

heated  Nichrome  wire. 

When both grids  are  installed  in  the  tunnel,  the  second  downstream of 

the first, we will  have a rectangular  grid  with a power  capability of 
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Figure  24a. Turbulence  Grid Detail 
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Figure  24b. Turbulence  Grid 



approximately 20 KW. The lateral displacement of the  two  unidirectional 

gr ids  is consistent  with  previous  designs. 

D. Computation  and  Data  Reduction 

After  the  film  plates  were  exposed  and  developed,  they  were  read by 

means of a microphotodensitometer.  The  unit  which we used  had a var iable  

speed  drive on the  traversing  table  which  slowed  when  the  recording  pen  was 

forced  to  displace  quickly.  This  eliminated  pen  lag,  but  complicated  the  com- 

puter  program.  The  negative  was  traversed 41  times  with a spacing  between 

lines of 0.  5 mm. The  coverage is shown  in  Fig. 25. 

This  method of surveying  the  film  plate  was  used  to  give  us  the  largest 

number of independent  data  points  that  could  be  stored  in  the IBM 1800 com- 

puter  for  the  correlation  computation.  This is important  since  the  results of 

Sec. V indicate  approximately 15 frames  will  be  needed  to  obtain good range 

accuracy.  Furthermore,  it   takes  about 9 0  minutes  to  scan  and  tape-record a 

single  photo, s o  that  any  reduction  in  the  number is a great  saving. 

Although  most of the  analytical  and  theoretical  work  was  and  will  be 

done on the CDC 6500 computer,  the IBM 1800 was  chosen  for  interpretation 

of our  preliminary  data,  because we felt  that, on account of the  1800's  greater 

accessibil i ty,   more  could be accomplished on i t  in a limited  time.  This 

expectation  was,  unfortunately,  not  realized  because of certain  unexpected 

difficulties  we  encountered  in  adapting a tape-read  subroutine.  The 6500 has 

considerable  advantages  over  the 1800 in  memory  capacity,   programming 

flexibility,  speed,  and  economy of operation, and will  probably  be  relied on 

for  most of our  data  processing  in  the  future. 

Figure 2 6  is a block  diagram of the  system  built  to  measure  the  photo- 

graphic  data  and  transfer  it  to  computer  tape.  The  photodensitometer is a 

Joyce Model MK ILI C. The  voltage-controlled  oscillators  were  Wavetek 

Model I1 1 ' s .  

The on-off channel  was  used  to  indicate  regions of valid  data  to  the  com- 

puter.  It  was  turned off during  the  return of the  table,  in  order  to  give  an 

accurate  count of the  trace  and s o  that  spurious  data  would  not  be  digitized. 
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Figure 25. Standard  Method  for  Scanning  Film  Transparencies 
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Figure 26. Block Diagram of Densitometer  and  Tape  Recorder. 
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A linear  potentiometer  was  used  to  read  out  the  table  position, as indi- 

cated  in  the  block  diagram.  The  full  range of the  potentiometer  was  not  used 

in  our  init ial   runs,   and  greater  accuracy if necessary  can be obtained by 

attaching it to  the  drive  arm  rather  than  the  f i lm  table.   The  density  readout 

was  obtained  from a multiturn  Helipot.  This  potentiometer  was  gear-driven 

by  the  pen  drive  servo. Its deflection  can,  therefore,  be  increased  by  chang- 

ing  the  photodensitometer  optical  wedge.  The  center  frequency  for  the  density 

and  position VCO's was 960 Hertz.  The  on-off  frequencies  were 2300 Hz. and 

2000 Hz. respectively. 

A normal  frequency  variation  for  the  density  was  from 886 Hz. for a 

blocked  beam  to  1026  Hz.  for  clear  film.  For  the  displacement,  the  fre- 

quency  range  was  from 902 Hz. to 1047 Hz. 

During  the  initial  run, a calibration  was  made  for  the  computer on both 

the  density  and  the  displacement  potentiometers.  This  calibration  also 

insured  that   the  density  servo would remain on scale,  and  that  the  voltage- 

controlled  oscillators  were  operating  properly. 

Figure 27 is a typical  photodensitometer  trace of a laser  beam  photo 

transparency  as  recorded by  the  servo  driven  pen.  The  transparency  used  for 

this  trace  was  almost  identical  to  that  used  for  computer  run  #1,  the  only  dif- 

ference  being  the  use of a less  intense  laser  beam  (attenuation  added)  to  check 

for  film  saturation. 

The  full  trace  corresponds  to  approximately 5 c m  on the  film  transpar- 

ency.  The  optical  density  vs.  displacement  curve  indicates  that  film  satura- 

tion is not a problem  at  this  exposure  level. I€ indeed  any  film  saturation 

does  occur,  only  the  center  peak  could  possibly be effected,  and it is quite 

sharp. On the  photodensitometer  traces  used  for  the  three  computer  runs, 

the slit width  was  set  at .005 inches (127 microns)  and the  height  was  approxi- 

mately  the  same.  The  optical  wedges  used  in  the  densitometer  are  quite  lin- 

e a r ,  and we have  not  corrected  for  any  variation  from  linearity.  However, 

we  do  have  calibration  curves on the  wedges  which  can  be  used  to  correct  this 

source of e r r o r  i f  necessary.  
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Figure 27. Typical  Photodensitometer  Trace 



W e  are presently  attempting  calculations of the  range  using  the  initial 

data  taken.  Three  film-to-tape  runs of reasonable  quality  were  made  to 

check  out  the  equipment  and  the  computer  program. 

Run  #1:  Made  on a photo  transparency  where  the  range  was 12 meters  

Run #2: Made on a photo  transparency  with a turbulence  range of 8 
me te r s  

Run # 3 :  Range  again  was 12 meters  but  intensity of turbulence  was 

decreased. 

The  following  data  processing  steps  are  required: 

1. Analog-to-Digital  Conversion 

The  analog  tape  containing  the On-Off signal,  the  carriage  position,  and 

the  film  density on three  separate  channels is converted  to a 9-track  digital 

tape,  suitable  for  input  to  the  IBM 1800 computer. 

2. Interpolation 

The  digitizing  routine (1 )  samples  the  analog  tape  at  uniform  time  incre- 

ments.  However,  in  order  to  calculate  the  correlation  function, we require 

uniform  increments of carriage  displacement.  As described  above,  the  car- 

riage  displacement is not a linear  function of time.  Therefore,  an  interpola- 

tion is done  to  construct a second  digital  tape  which  contains  the  film  density 

at  uniform  increments of displacement.  The  film is sampled  at a horizontal 

spacing of 0. 25 mm.  This  gives  approximately 7 samples  in  the  distance 

PO 
= J4zo/k. There   a r e  160 sample  points  per  l ine.   There  are 41 lines 

per  photograph,  with  vertical  spacing of 0. 50 mm. 

3 .  Correlation  Computation 

The correlation  function is calculated  in  the  manner  illustrated  in  Fig. 

18. The  integral  over a se,micircle  appearing in Eq. ( 5 .  17) is approximated 

by a sum  over  the  sample  points  between two semicircular  arcs  with  radii   dif-  

fering by 0. 25 mm. 

4. Profile  Calculation 

The  correlation  function is fed  into  the CDC 6500 and  inverted by the 

program  for  Eq.  (1.  13).  The  resulting S ( z )  is differentiated  to  obtain  Cn(z). 2 
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When  the computation  was  attempted,  however, it was  discovered  that 

the  tape-reading  routine  contained  an  error.  This  prevented  our  completing 

the  calculation. We are  currently  awaiting  an  improved  version of the  tape- 

r e ading  routine . 

90 



VII. CONCLUSIONS AND  FUTURE  PLANS 

We have  investigated  the  practicality of applying  the  integral  transform 

of the  logarithmic-amplitude  correlation  function  given in Eq.  (1. l o ) ,  and  the 

more  rapidly  converging  form  given  in Eq. (1. 13),  for  remote  sensing of 

atmospheric  turbulence  profiles. With these  equations  the  turbulence  profile, 

Cn(z)  can be determined  uniquely by calculating  an  integro-differential  trans- 

fo rm of the  correlation  function, BX(p).  The  determination of C (2)  is  exact 

only if  BX(p)  is known exactly  over  the  entire  range 0 < p < a. This, of 

course,   is   never  true in practice,   since,  i f  B (p)  is  obtained  from a measure-  

ment  there  is  always  noise  present. 

2 

2 
n 

X 

We have  begun  a  study of the  effect of practical  limitations  in  measure- 

ment of the  correlation  function on the  profile  calculation. A computer  pro- 

gram  has  been  written  for  performing  the  mathematical  operations of Eqs. 

(1. 10)  and (1. 13) on correlation  functions.  This  requires  the  calculation of 

confluent  hypergeometric  functions of imaginary  argument  since  these  are  not 

available  in  tables. A number of important  practical  questions  have  been 

answered by  applying  the  computer  program  to  the  correlation  function of a 

delta-function  turbulence  profile,  Cn(z) = A6(z-zo). This is the  mathematical 

representation of a  thin layer of turbulence  for  which  the  observer-to- 

turbulence  distance  is  much  greater  than  the  layer  thickness , and i s  a  conven- 

ient  profile fo r  studying  the  properties of Eqs. (1. 10) and (1. 13) .  A computer 

calculation  was  made to  obtain  the  delta-function  profile  correlation  function, 

which is   a lso  expressible   in   terms of a  confluent  hypergeometric  function of 

imaginary  argument. 

2 

The  correlation  function B (p)  thus  calculated  (Fig. l ) ,  and  in  fact  any X 
correlation  function,  according  to Eq. (1. 1 l) ,   approaches  zero  rapidly  as 

p -a. Hence,  for  separations  greater  than  some  value p = any  experi- 

mental   measurement of B (p)  will be overshadowed by noise. In a practical  

application  it will thus be necessary  to  truncate B (p)  at  some  value pm < a. 
We have  studied  the  effect of truncation by applying  Eqs. (1. 10)  and (1. 1 3 )  to 

the  correlation  function  calculated  for a delta-function  profile  whose  correla- 

tion  function  is  truncated  at p The  result of the  computation is that,  as one 

Pm 

X 

X 

m’ 
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would  expect,  the  inversion  formulas  predict a finite layer thickness D (rather  

than  the  zero  thickness of the  delta  function) if p is not  infinite.  The  pre- 

dicted  layer  thickness is found to be  related  to pm and  the  distance,  zo,  to  the 

layer  by  Eq.  (3.  12), D = 16  zo/pmk.  This  result is applicable  to  any  arbi- 

trary  profile,  i f  D is interpreted as the  size of the  smallest  scale  variation  in 

Cn(z)  near z = zo  that  can  be  resolved. 

m 

2 2  

2 

To  give a specific  numerical  example,  let  us  say we are  interested  in 

calculating C ( z )  in  the  tropopause by using  ground-based  stellar  scintillation 

measurements  to  obtain B (p).  The  distance is z = 8 km. If we wish  to  dis- x 0 
tinguish  features  in  the  profile  larger  than 1 km,  by  applying  Eq. ( 3 .  12), we 

obtain p = 42 / & = 30 cm.  The  correlation  function  can  therefore be 

measured  within  the  desired  spatial  resolution by  using  an  array of telescopes 

in  which  the  maximum  separation  required  between a pair  of telescopes is 30 

cm. 

2 
n 

m 0 

The  correlation  function B (p)  is sampled by  the  telescope  array  at a x 
discrete   set  of points p..  The  integral  transforms  (1. l o ) ,  (1.  13)  [or (3. l o ) ,  

which i s  the  specialization of (1.  13)  to  the  delta-function  case]  are  approxi- 

mated by sums  in  the  computer  calculation.  Each  term  in  the  sum  contains 

the  correlation  function  at one sample  point. We can  thus  predict  the  number 

of sample  points  required by  studying  the  effect of varying  the  number of 

terms  used  in  the  computer  program.  The  results  are  shown  in F ig .  10 for  

pmk/4zo = 100 (for  which D = . 04z0).  The  figure  indicates  that  as  the  range 

of z over  which  the  profile is calculated  increases,  the  number of sample 

points  in  the  correlation  function  must  increase.  For  example, i f  we calcu- 

late  the  profile  from  Eq. (3 .  10)  in  the  range 0. 9z < z < 1. 2z0 ,  100 sample 

points  suffice,  whereas i f  we calculate  i t   in  the  larger  range 0. 22 < z 

< 1.22  1000 points  are  needed.  The  number of telescopes  required is much 

less  than  these  numbers.  (The  minimum  number of telescopes  that  can  be 

arranged  in a straight-line  array  such  that  the  separation  between  different 

telescopes  are  integral  multiples  1, 2 ,  . . . m can  be  determined. l 3  For  

example,  to  obtain  separations  1,2, . . . 45, only  eleven  telescopes  are 

required,  spaced  with  successive  separations:  18,  1, 3 ,  9, 11, 6, 8, 2 ,  5, 

28. ) If we relax  the  resolution  requirement  at z (i. e . ,  D > 0.042 ), fewer 

points  will  be  needed. A study of the  computer  calculations  for  various 
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numbers of sample  points (a selection of which is shown in Figs.  7-9)  indi- 

cates  that  with a different  arrangement of sample  points we can  improve  the 

calculation,  for a given  number of sample  points. In all our  calculations  we 

have  positioned  the  sample  points so that  they  are  uniformly  spaced  in  the 

variable p . This  makes  the  density of points  greater at large p. In the  cal-  

culations  using a smaller  number of sample  points  (e.  g.,  Fig.  8d)  the  calcu- 

' lation is seen  to  break down a t   smal l  p. We will  therefore  repeat  our  calcula- 

tions  using  other  spacing  arrangements  which  place  relatively  more  points at 
smal l  p. We will first try  uniform  spacing  in p. We expect  this  to  increase 

the  accuracy of the  profile  calculation  for a given  number of sample  points. 

This  will,  in  turn,  reduce  the  number of telescopes  required. 

2 

For  studying  the  spatial  resolution,  the  delta-function  profile  was  the 

obvious  choice. It places  all  the  turbulence  at a single  range, zo, thus  allow- 

ing  us  to  see  clearly  the  range  dependence of the inversion  technique.  It  has 

zero  width, s o  that  the  width of the  calculated  profile is a direct   measure of 

the  loss  in  spatial  resolution  introduced by the  inversion  calculation.  Because 

of i ts   singular  nature,  it is also  the  most  difficult  inversion  to  perform.  That 

is, we  should  expect  slower  convergence of the  transforms (1.  10)  and  (1.  13) 

for  inversion of B ( p )  for a delta-function  profile  than  any  other B (p) ,  and if  

the  calculation  converges  in  this  case,  it  should  converge  for  any  other  pro- 

file. It is of inte.rest,  however,  to  apply  the  inversion  formulas to  the  corre-  

lation  function of a smooth  turbulence  profile,  which  more  closely  resembles 

those  expected  in  practice. 

x x 

We have  obtained  an  analytic  expression  for the correlation  function of 

turbulence  profiles of the  form C (z)  - ( p . ~ / z ~ ) ~  e-p.z/zo,  shown  in  Fig. 11. 

These  profiles  have  their  maximum  value  at z = eo and  have  increasingly 

narrower  width  as p increases.  The  expression  for  the  corresponding  corre- 

lation  function  (4.  14) is in   terms of a generalized  hypergeometric  function. 

We have  presented  the  computer  calculation of this B ( p )  for p = 1 ,2  and 4 in 

Figs.  12a,b,c,  which  were  obtained  using  the  power  series  for  the  hypergeo- 

metric  function.  (For  larger p. the  power  series  calculation  breaks down and 

it  is  necessary  to  use  asymptotic  expansions  for  the  hypergeometric  functions 

which  are  apparently  not  available, but we hope to  derive  in  the  future. ) 

Comparing  the  correlation  functions  in  Figs.  12a,  b, c with  the  delta-function 
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correlation  in  Fig. 1,  we  find  comparatively little oscillation  for large p in 
the  former.  

W e  have  inverted  these  three  correlation  functions  utilizing the inver- 
sion  formulas (1. 10)  and  (1.  13)  and  obtain  the  results  shown  in  Figs.  14 - 16. 
We  find,  as  expected,  that  the  integrals  converge  much  more  rapidly  (for 

smal le r  p ) than  in  the  delta-function  case. We also  find  that  the  improved 

convergence of (1.  13)  (lower  curves)  compared  to  (1.  10)  (upper  curves) is 

more  significant  when  applied  to  the  smooth-profile  case. 

m 

Improved  convergence  is  obtained  with Eq. (1.  13) by adding a f i r s t -  

order  approximation  to  the  portion of the  integral  in Eq.  (1. 10)  from p to  a. 

This  procedure  works  better  for  the  smooth  correlation  functions  because it is 

better  able  to  approximate  the  tail of the  correlation  function,  which  has  less 

of the  oscillatory  behavior of the  delta-function  case. We anticipate  that 

measured  correlation  functions of real   turbulence  profiles  will   more  closely 

resemble  Figs.  12a,  b, c than  Fig. 1 and that the  added  complication of using 

Eq. (1. 13) rather  than  (1.  10) will  pay off. We have  not  yet  written  the  com- 

puter  program  for  Eq.  (1.  12)  which  can  be  used  to  calculate  the  correction 

t e r m  in Eq. (1.  13)  directly  from  an  integral  transform of B (p)  but  will  do so 

in  the  near  future. 

m 

X 

1 

Equations (5. 2)  - (5.  5), re la te   the  error ,  D = in  the  cal- 

culated  integrated  profile to  the  autocorrelation  function <N(pi) N(p. )> ,  of the 

noise, N ( p . ) ,  in a measured  logarithmic - intensity  correlation  function.  The 

integrals  in Eq. (5. 2) are  evaluated  explicitly  when  the  noise  autocorrelation 

has  the  form <N(pi)N(p.)> = v (p i )d i j ,  i . e . ,  when  the  noise a t  two distinct 

sample  points is uncorrelated.  For  this  type of noise, we  thus  have  the rela-  

tion (5. 13) or  (5. 13')  which  indicate  that u is proportional  to v ( p  ), inversely 

proportional  to  the  square  root of the  number o$ sample  points,  m,  and  pro- 

portional  to ( pmk/4z) . Because of the  strong  dependence of D on p, it 

is important  in  any  application  to  have p as small  as  possible  [subject  to  the 

constraint  that p be large  enough  to  obtain  the  desired  spatial  resolution 

determined  by  Eq.  (3. 12)]. The  strong  dependence of u on m occurs  because 

the  kernel  function  in  Eq. (1. 10) o r  (1.  13)  (shown  in  Fig. 2) increases  with 

increasing p and  hence  magnifies  the  effect of the  noise  in B (p )  a t   l a rge  p. 
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Equation (5. 14) relates  'Bx to  the  spatial  extent, L, of the  intensity 

sample  used  in a measurement  of B (p). Combined  with Eq. (5. 13), in  the 

special   case of delta-function  turbulence , we  obtain Eq. (5. 21)  which  indicates 

that (r is inversely  proportional to  the sample  length, L. If we  consider  the 

case,  discussed  above, of sensing  turbulence  in  the  tropopause  at a distance 

of 8 km,  assuming a velocity of about V = 150 mph  in  the  tropopause, we will 

require  an  averaging  time  (T = L/V) of about 10 seconds  in  order  to  have  the 

rms  error  in  the  calculated  profile  equal t o  lo%, i. e. , u = 0. 1. 

X 

S 

S 

We have  assumed  that  the  noise  occurring  in  the  measurement of B (p) X 
has  an  autocorrelation  function of the  form (5.6). This  assumption  must 

break down if the  number of sample  points , m,  becomes  too  large.  Further 

study will be required  to  determine  the  range of m  over  which  this  assumption 

is justified o r  what  modification  is  necessary  to Eq. (5. 21) if we are  outside 

this  range. We also  must  extend  our  results t o  other  sources of measurement  

noise  (stray  light,  photomultiplier  noise,  etc. ). 
We have  set  up a laboratory  experiment to  verify  the  predictions of the 

theoretical  study.  The  experimental  arrangement  consists of a wind  tunnel 

,fitted  with a heated-wire  grid  for  generating  turbulence, a laser  l ight  source,  

and a photographic  system  for  recording  the  random  intensity  pattern  which is 

induced  in  the  laser  beam by passage  through the turbulence.  The  photograph 

is scanned by a photodensitometer  and  the  correlation  function  calculated 

using  the  resultant  data  and a digital  computer. 

We do  not  yet  have a satisfactory  operational  heated-grid,  but  have 

made  preliminary  photographs  using a small  heater  as  the  turbulence  source. 

We have  scanned  these  photographs  with  the  densitometer  and  written  most of 

the  program  for  obtaining  the  correlation  function  from  the  data. We have, 

however,  encountered  difficulties  with a tape-read  computer  routine  and  have 

been  unable  to  complete  the  calculation. We hope to  overcome  this  difficulty 

in  the  hear  future. In addition,  we  expect  to  have  the  heated-grid  installed  in 

the  wind tunnel  and  to  obtain  additional  photographs  for  analysis. 

95 





REFERENCES 

i,l .  A. Peskoff,  "Theory of Remote  Sensing of Clear-Air   Turbulence  Pro-  
z fi les,  J. Opt. SOC. Amer. - 58,  1032-1040  (August  1968)  Eq.  (20). 16 

2. V. I. Tatarski ,  "Wave Propagation  in a Turbulent  Medium,"  McGraw- 
Hill Book  Company, New York, 1961. 

3. M. Abramowitz  and I. A. Stegun,  "Handbook of Mathematical  Func- 
t ions," NBS Appl.  Math. Ser .  55, U. S. Dept.  Commerce,  June  1964, 
Chapter 13. 

5. Ibid. , Eq. (A5). 

6. Ref. 3 ,  formula 13. 1. 2. 

7. Ibid.,  formula 13.  5. 1. 

8. W. Grobner  and N. Hofreiter,  Integraltafeln,  Zweiter  Teil,  Bestimmte 
Integralen,  Springer-Verlag,  Vienna  and  Innsbruck,  1950, p. 196 for-  
mula # 1. 

9. A. Erdelyi,   ed. ,   Tables of Integral   Transforms, Vol. 11, McGraw-Hill 
Book Go., New York,  1954,  p. 24, formula #2.  

10. K .  Pearson,   "Tables  of the  Incomplete  Gamma-Functions,' '  Cambridge 
Univ. P r e s s ,  1951. 

11. J. S. Bendat,  "Principles  and  Applications of Random  Noise  Theory, 
New York,  John  Wiley  and Sons, Inc.,  1958,  Chapter 7. 

12. R. Mills, N. A. C.  A. TN  4288,  August  1958 

13. J. Leech, "On the  Representation of 1, 2, . . . n by Differences, ' I  J. 
London  Math. SOC. 3 1, 160 (1956). - 

NASA-Langley, 1910 - 20 CR-1491 97 


